函数求导

四则运算的求导法则

定理1:函数$u = u(x)$ 及 $v = v(x)$都在$x$具有导数$\Longrightarrow u(x)$ 及 $v(x)$的和、差、积、商(除分母为0的点外)都在点$x$可导,则

用导数的定义可以证明上面的3个公式

推论:

例1. $y = \sqrt{x}(x^3 - 4\cos{x} - sin{1}), 求y^{\prime}及\left. y^{\prime} \right|_{x = 1} $

例2.求证$(\tan{x})^{\prime} = \sec^2{x}, (\csc{x})^{\prime} = -\csc{x} \cot{x} $

证:

复合函数的求导法则

定理2:$u=g(x)$在点$x$可导, $y = f(u)$在点$u=g(x)$可导$\Longrightarrow$复合函数$y= f[g(x)]$在点$x$可导,且$\dfrac{dy}{dx} = f^{\prime}(u)g^{\prime}(x)$.

证:

推广:此法则可推广到多个中间变量的情形

例如:$y = f(u), u = \varphi(v), v = \psi(x) $
$\dfrac{dy}{dx} = \dfrac{dy}{du} \cdot \dfrac{du}{dv} \cdot \dfrac{dv}{dx} $
$= f^{\prime}(u) \cdot \varphi^{\prime}(v) \cdot \psi^{\prime}(x)$

例3.求下列导数:$(1)(x^{\mu})^{\prime};(2) (x^x)^{\prime}; (3)(\sinh {x})^{\prime} $

解:

例4.设 $y = \ln{\cos(e^x)}$,求$\dfrac{dy}{dx}$

解:

多元复合函数的求导法则

设有一元复合函数:$ y = f(u), u = \varphi(x)$,则有下面的法则
求导法则:$\quad \dfrac{dy}{dx} = \dfrac{dy}{du} \cdot \dfrac{du}{dx}$
微分法则:$\quad dy = f^{\prime}(u)du = f^{\prime}(u)\varphi^{\prime}(x)dx$

定理:若函数$u = \varphi(t),v = \psi(t)$在点$t$可导,$ z=f(u, v)$在点$(u, v)$处偏导连续,则复合函数$z = f(\varphi(t), \psi(t))$在点$t$可导,且有链式法则

证:

推广: 中间变量是多元函数的情形.例如
$z = f(u, v), u = \varphi(x, y), v = \psi(x, y)$

又如,$z = f(x, v), v = \psi(x, y) $,当他们都具有可微条件时,有

注意:$这里\dfrac{\partial z}{\partial x} 与\dfrac{\partial f}{\partial x}不同, \dfrac{\partial z}{\partial x}表示固定y对x求导, \dfrac{\partial f}{\partial x}表示固定v对x求导$

口诀:分段用乘,分叉用加,单路全导,叉路偏导

例1.$设z = e^u \sin{v}, u = xy, v = x + y,求\dfrac{\partial z}{\partial x}, \dfrac{\partial z}{\partial y}$

解:

例2.$设z = uv + \sin{t}, u = e^t, v = cos{t},求全导数\dfrac{dz}{dt}$

解:

注意:多元抽象复合函数求偏微分方程变形与验证解的问题中经常遇到,下列两个例题有助于掌握这方面问题和常用的导数符号注意:多元抽象复合函数求偏微分方程变形与验证解的问题中经常遇到,下列两个例题有助于掌握这方面问题和常用的导数符号

1) 已知$f(x, y)| _ {y = x^2} = 1, f_1^{\prime}(x, y) | _ {y = x^2} = 2x,求f_2^{\prime}(x, y) | _ {y = x^2}$

解:

2) $设z = \sin(xy^2),求\dfrac{\partial z}{\partial x}, \dfrac{\partial z}{\partial y}$

解:

3) $设z = f(x^2y, y^2),求\dfrac{\partial z}{\partial x}, \dfrac{\partial z}{\partial y}$

解:

4) $设z = f(\dfrac{y}{x}), f(u)为可微函数,证明: x\dfrac{\partial z}{\partial x} + y\dfrac{\partial z}{\partial y} = 0$

证:

5) $设z = (x + 2y)^{(x + 2y)}, 求\dfrac{\partial z}{\partial x}, \dfrac{\partial z}{\partial y}$

解:

初等函数的求导问题

常数和基本初等函数的导数(P94)

有限次四则运算的求导法则

复合函数的求导法则

$\color{blue}{
y = f(u), u = \varphi(x) \\
\dfrac{dy}{dx} = \dfrac{dy}{du} \cdot \dfrac{du}{dx} = f^{\prime}(u) \cdot \varphi^{\prime}(x)
}$

初等函数在定义域区间内可导,且导数仍为初等函数

说明:最基本的公式:

内容小结

求导公式及求导法则(P94)

注意:

$1)(uv)^{\prime} \neq u^{\prime}v^{\prime}, \quad (\dfrac{u}{v})^{\prime} \neq \dfrac{u^{\prime}}{v^{\prime}}$

2)搞清楚复合函数结构,有外向内逐层求导.

参考

高数 02.02函数的求导法则
高数 07.04 多元复合函数的求导法则

------ 本文结束------
坚持原创技术分享,您的支持将鼓励我继续创作!

欢迎关注我的其它发布渠道