03复杂度分析(下):浅析最好、最坏、平均、均摊时间复杂度

首先,该文章来自于极客时间网站,王争的专栏——《数据结构与算法之美》,我这里只是做简单的解释、记录并添加自己的见解,只是作为个人笔记,若侵权,马上删除。最后建议直接去该网站上购买该课程看原作者的讲解,一来是支持作者,二来是作者写的确实不错。

除了讲复杂度的大O表示法,常见的复杂度分析例子,比如 O(1)、O(logn)、O(n)、O(nlogn) 复杂度分析,还有四个复杂度分析方面的知识点:最好情况时间复杂度(best case time complexity)、最坏情况时间复杂度(worst case time complexity)、平均情况时间复杂度(average case time complexity)、均摊时间复杂度(amortized time complexity)。

最好、最坏情况时间复杂度

代码如下:

1
2
3
4
5
6
7
8
9
// n表示数组array的长度
int find(int[] array, int n, int x) {
int i = 0;
int pos = -1;
for (; i < n; ++i) {
if (array[i] == x) pos = i;
}
return pos;
}

这段代码要实现的功能是,在一个无序的数组(array)中,查找变量 x 出现的位置。如果没有找到,就返回 -1。按照上节课讲的分析方法,这段代码的复杂度是 O(n),其中,n 代表数组的长度。

我们在数组中查找一个数据,并不需要每次都把整个数组都遍历一遍,因为有可能中途找到就可以提前结束循环了。但是,这段代码写得不够高效。我们可以这样优化一下这段查找代码。

1
2
3
4
5
6
7
8
9
10
11
12
// n表示数组array的长度
int find(int[] array, int n, int x) {
int i = 0;
int pos = -1;
for (; i < n; ++i) {
if (array[i] == x) {
pos = i;
break;
}
}
return pos;
}

这个代码的时间复杂度还是O(n)么?很明显,之前学习的知识并不能解决这个问题。因为,要查找的变量 x 可能出现在数组的任意位置。如果数组中第一个元素正好是要查找的变量 x,那就不需要继续遍历剩下的 n-1 个数据了,那时间复杂度就是 O(1)。但如果数组中不存在变量 x,那我们就需要把整个数组都遍历一遍,时间复杂度就成了 O(n)。所以,不同的情况下,这段代码的时间复杂度是不一样的。

为了表示代码在不同情况下的不同时间复杂度,我们需要引入三个概念:最好情况时间复杂度、最坏情况时间复杂度和平均情况时间复杂度。

最好情况时间复杂度就是,在最理想的情况下,执行这段代码的时间复杂度。上面例子中,在最理想的情况下,要查找的变量 x 正好是数组的第一个元素,这个时候对应的时间复杂度就是最好情况时间复杂度。

最坏情况时间复杂度就是,在最糟糕的情况下,执行这段代码的时间复杂度。上面例子中,如果数组中没有要查找的变量 x,我们需要把整个数组都遍历一遍才行,所以这种最糟糕情况下对应的时间复杂度就是最坏情况时间复杂度。

平均情况时间复杂度

最好情况时间复杂度和最坏情况时间复杂度对应的都是极端情况下的代码复杂度,发生的概率其实并不大。为了更好地表示平均情况下的复杂度,需要引入另一个概念:平均情况时间复杂度,后面简称为平均时间复杂度。

以刚才的例子,要查找的变量 x 在数组中的位置,有 n+1 种情况:在数组的 0~n-1 位置中和不在数组中。把每种情况下,查找需要遍历的元素个数累加起来,然后再除以 n+1,就可以得到需要遍历的元素个数的平均值,即:

时间复杂度的大 O 标记法中,可以省略掉系数、低阶、常量,所以,把刚刚这个公式简化之后,得到的平均时间复杂度就是 O(n)。

这个结论虽然是正确的,但是计算过程稍微有点儿问题。问题在于这n+1 种情况,出现的概率并不是一样的。要查找的变量 x,要么在数组里,要么就不在数组里。这两种情况对应的概率统计起来很麻烦,为了方便你理解,我们假设在数组中与不在数组中的概率都为 1/2。另外,要查找的数据出现在 0~n-1 这 n 个位置的概率也是一样的,为 1/n。所以,根据概率乘法法则,要查找的数据出现在 0~n-1 中任意位置的概率就是 1/(2n)。如果我们把每种情况发生的概率也考虑进去,那平均时间复杂度的计算过程就变成了这样:

这个值就是概率论中的加权平均值,也叫作期望值,所以平均时间复杂度的全称应该叫加权平均时间复杂度或者期望时间复杂度。

引入概率之后,前面那段代码的加权平均值为 (3n+1)/4。用大 O 表示法来表示,去掉系数和常量,这段代码的加权平均时间复杂度仍然是 O(n)。

根据上面的例子,感觉时间复杂度挺麻烦的,要涉及到概率论的知识。实际上,平时并不需要区分最好、最坏、平均情况时间复杂度三种情况。很多时候,我们使用一个复杂度就可以满足需求了。只有同一块代码在不同的情况下,时间复杂度有量级的差距,我们才会使用这三种复杂度表示法来区分。

均摊时间复杂度

还有一个概念,均摊时间复杂度,以及它对应的分析方法,摊还分析(或者叫平摊分析)。平均复杂度只在某些特殊情况下才会用到,而均摊时间复杂度应用的场景比它更加特殊、更加有限。

代码例子如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// array表示一个长度为n的数组
// 代码中的array.length就等于n
int[] array = new int[n];
int count = 0;

void insert(int val) {
if (count == array.length) {
int sum = 0;
for (int i = 0; i < array.length; ++i) {
sum = sum + array[i];
}
array[0] = sum;
count = 1;
}

array[count] = val;
++count;
}

这段代码实现了一个往数组中插入数据的功能。当数组满了之后,也就是代码中的count == array.length时,我们用 for 循环遍历数组求和,并清空数组,将求和之后的 sum 值放到数组的第一个位置,然后再将新的数据插入。但如果数组一开始就有空闲空间,则直接将数据插入数组。

最理想的情况下,数组中有空闲空间,我们只需要将数据插入到数组下标为 count 的位置就可以了,所以最好情况时间复杂度为 O(1)。最坏的情况下,数组中没有空闲空间了,我们需要先做一次数组的遍历求和,然后再将数据插入,所以最坏情况时间复杂度为 O(n)。

那平均时间复杂度是多少呢?答案是 O(1)。我们还是可以通过前面讲的概率论的方法来分析。假设数组的长度是 n,根据数据插入的位置的不同,我们可以分为 n 种情况,每种情况的时间复杂度是 O(1)。除此之外,还有一种“额外”的情况,就是在数组没有空闲空间时插入一个数据,这个时候的时间复杂度是 O(n)。而且,这 n+1 种情况发生的概率一样,都是 1/(n+1)。所以,根据加权平均的计算方法,我们求得的平均时间复杂度就是:

这个例子里的平均复杂度分析其实并不需要这么复杂,不需要引入概率论的知识。这是为什么呢?观察insert()函数以及find()函数,会发现这两者有很大区别。

首先,find() 函数在极端情况下(最优情况下),复杂度才为 O(1)。但 insert() 在大部分情况下,时间复杂度都为 O(1)。只有个别情况下,复杂度才比较高,为 O(n)。这是 insert()第一个区别于 find() 的地方。

对于 insert() 函数来说,O(1) 时间复杂度的插入和 O(n) 时间复杂度的插入,出现的频率是非常有规律的,而且有一定的前后时序关系,一般都是一个 O(n) 插入之后,紧跟着 n-1 个 O(1) 的插入操作,循环往复。这是第二个区别。

所以,针对这样一种特殊场景的复杂度分析,我们并不需要像之前讲平均复杂度分析方法那样,找出所有的输入情况及相应的发生概率,然后再计算加权平均值。针对这种特殊的场景,我们引入了一种更加简单的分析方法:摊还分析法,通过摊还分析得到的时间复杂度我们起了一个名字,叫均摊时间复杂度

那么如何使用摊还分析法呢?我们还是继续看在数组中插入数据的这个例子。每一次 O(n) 的插入操作,都会跟着 n-1 次 O(1) 的插入操作,所以把耗时多的那次操作均摊到接下来的 n-1 次耗时少的操作上,均摊下来,这一组连续的操作的均摊时间复杂度就是 O(1)。这就是均摊分析的大致思路。

对一个数据结构进行一组连续操作中,大部分情况下时间复杂度都很低,只有个别情况下时间复杂度比较高,而且这些操作之间存在前后连贯的时序关系,这个时候,我们就可以将这一组操作放在一块儿分析,看是否能将较高时间复杂度那次操作的耗时,平摊到其他那些时间复杂度比较低的操作上。而且,在能够应用均摊时间复杂度分析的场合,一般均摊时间复杂度就等于最好情况时间复杂度。

尽管很多数据结构和算法书籍都花了很大力气来区分平均时间复杂度和均摊时间复杂度,但其实我个人认为,均摊时间复杂度就是一种特殊的平均时间复杂度,我们没必要花太多精力去区分它们。你最应该掌握的是它的分析方法,摊还分析。至于分析出来的结果是叫平均还是叫均摊,这只是个说法,并不重要。

内容小结

之所以引入最好情况时间复杂度、最坏情况时间复杂度、平均情况时间复杂度、均摊时间复杂度这几个复杂度概念,是因为,同一段代码,在不同输入的情况下,复杂度量级有可能是不一样的。

分析下面例子中的时间复杂度:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
// 全局变量,大小为10的数组array,长度len,下标i。
int array[] = new int[10];
int len = 10;
int i = 0;

// 往数组中添加一个元素
void add(int element) {
if (i >= len) { // 数组空间不够了
// 重新申请一个2倍大小的数组空间
int new_array[] = new int[len*2];
// 把原来array数组中的数据依次copy到new_array
for (int j = 0; j < len; ++j) {
new_array[j] = array[j];
}
// new_array复制给array,array现在大小就是2倍len了
array = new_array;
len = 2 * len;
}
// 将element放到下标为i的位置,下标i加一
array[i] = element;
++i;
}

这个代码的功能就不再赘述了,在代码的注释中有详细的说明。最理想的情况下,这个数组还有空闲位置,那么时间复杂度为O(1)。最坏情况下,这个数组没有空闲位置了,那么时间复杂度为O(n)。

对于平均时间复杂度有三种计算方式:

第一种方式:添加的变量 x 时有 n+1 种情况:数组未满的n个情况以及数组满了的情况。把每种情况下,需要执行的代码次数累加起来,然后再除以 n+1,就可以得到需要遍历的元素个数的平均值,即:

第二种方式(加权平均法,又称期望):假设数组的长度是 n,根据数据插入的位置的不同,我们可以分为 n 种情况,每种情况的时间复杂度是 O(1)。除此之外,还有一种“额外”的情况,就是在数组没有空闲空间时插入一个数据,这个时候的时间复杂度是 O(n)。而且,这 n+1 种情况发生的概率一样,都是 1/(n+1)。所以,根据加权平均的计算方法,我们求得的平均时间复杂度就是:

第三种计算方式(均摊时间复杂度):前n个操作复杂度都是O(1),第n+1次操作的复杂度是O(n),所以把最后一次的复杂度分摊到前n次上,那么均摊下来每次操作的复杂度为O(1),即均摊时间复杂度为O(1)。

参考

04 | 复杂度分析(下):浅析最好、最坏、平均、均摊时间复杂度

------ 本文结束------
坚持原创技术分享,您的支持将鼓励我继续创作!

欢迎关注我的其它发布渠道